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Symmetries and alignment of biaxial nematic liquid crystals
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The possible symmetries of the biaxial nematic phase are examined against the implications of the
presently available experimental results. Contrary to the widespread notion that biaxial nematics
have orthorhombic symmetry, our study shows that a monoclinic (C,,) symmetry is more likely to
be the case for the recently observed phase biaxiality in thermotropic bent-core and
calamitic-tetrapode nematic systems. The methodology for differentiating between the possible
symmetries of the biaxial nematic phase by NMR and by IR spectroscopy measurements is
presented in detail. The manifestations of the different symmetries on the alignment of the biaxial
phase are identified and their implications on the measurement and quantification of biaxiality as
well as on the potential use of biaxial nematic liquid crystals in electro-optic applications are
discussed. © 2009 American Institute of Physics. [doi:10.1063/1.3226560]

I. INTRODUCTION

The structurally simplest liquid crystals are the uniaxial,
achiral, and apolar nematics.'* They are positionally uniform
and inversion-symmetric anisotropic media that have a
unique axis of full rotational symmetry, referred to as the
director n. The corresponding liquid crystal phase, often de-
noted as N, to distinguish it from other types of nematic
phases, has the symmetries of the D, point group. The an-
isotropy of the N, phase is primarily reflected on second-
rank tensor physical properties and is quantified by means of
second-rank tensor orientational order parameters. Nematics
of lower symmetry are in principle conceivable on relaxing
any one of the three basic symmetries of the N, phase—i.e.,
achirality, apolarity, and full rotational symmetry about the
director—or any combination thereof. However, of all the
conceivable lower symmetry nematics, only the chiral ones
(N¥) are quite common and have been around (historically as
“cholesterics”) since the beginning of liquid crystal science.
Moreover, several instances of the existence of chiral do-
mains in nematics formed by achiral molecules have been
reported.3_8 On the other hand, the theoretical possibilities of
achiral nematics with lower symmetry than the N, phase,
namely, polar uniaxial nematics,” "> biaxial apolar
rlematics,m_19 and polar biaxial nematics,lz’zo’21 have been
often proposed over the years. However, the experimental
identification of such phases has thus far been rather rare” >4
and in some cases controversial.>> >

The theoretical possibility of a biaxial nematic phase
was demonstrated, first by Freiser, in 1970."* The prediction
envisaged an achiral, apolar phase with three mutually or-
thogonal symmetry axes. This corresponds to the D,;, sym-
metry group and constitutes the most natural choice for illus-
trating the theoretical possibility, in the sense that it
introduces the minimal asymmetry to the N, phase (i.e., the
minimal symmetry breaking of D) that could be reflected
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on the second-rank tensor physical properties characterizing
an apolar nematic phase. Understandably, most of the subse-
quent theoretical and computer simulation works on biaxial
nematics'® dealt, either explicitly or implicitly, with phases
of this high symmetry. The same D,; symmetry was adopted
for the consistent analysis of the experimental data on the
first real biaxial nematic phase, discovered in 1980 by Yu and
Saupe in a lyotropic system.28 A D, symmetry, allowing for
three mutually orthogonal twofold symmetry axes and pos-
sible chiral asymmetry, was shortly thereafter adopted by
Saupe29 in his theoretical study of the elastic and flow prop-
erties of biaxial nematics. Also, the analysis of phase biaxi-
ality observed in side-chain nematic liquid crystal polymers
by optical measurements,”” and later by NMR,*! was based
on the understanding that the investigated biaxial nematic
phases have D,;, symmetry and led to qualitatively consistent
and quantitatively reasonable results. All these perhaps gen-
erated a tendency to design and interpret the majority of
experiments in the long quest for the thermotropic biaxial
nematic phase exclusively on the expectation that the sought
phase is necessarily of orthorhombic symmetry, with the
three symmetry axes defining a triplet of directors (n,1,m)
that are common principal axes for all the macroscopic
second-rank tensor properties of the medium. However, such
restriction is neither warranted by theory, where a variety of
symmetries for the biaxial nematic phase are a priory
possible,zo’32 nor imposed by experiment, particularly in the
case of the recent compelling experimental evidence of bi-
axiality in bent-core® and calamitic-tetrapode34’35 nematics.
The aim of the present work is to demonstrate that there are
in fact strong experimental indications that phase biaxiality
in these systems could be of lower symmetry than D,;, to
suggest ways of differentiating experimentally between biax-
ial nematic phases of different symmetries and to point out
possible flaws in the interpretation of the experimental re-
sults in case a higher symmetry than the actual one is
adopted for the analysis of the measurements on aligned
samples.

© 2009 American Institute of Physics
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The possible symmetries of an achiral, apolar biaxial
nematic phase are presented in Sec. II, together with their
general implications on the anisotropic physical properties of
these materials. The consequences of the different symme-
tries on the alignment of biaxial nematics, particularly in
relation to their electro-optic response, are considered in Sec.
III. Deuterium NMR methods have thus far offered the most
definitive means of identifying phase biaxiality in liquid
crystals. A detailed analysis of these methods, focusing on
the distinctive effects of different symmetries on the measur-
able spectra, is presented in Sec. IV and in the two related
appendixes. The main results from Sec. IV are carried over
in Sec. V to the application of infrared (IR) spectroscopy for
the study of biaxial order in nematics. The presently avail-
able experimental results on the biaxiality of various nematic
systems are critically reviewed in Sec. VI in regards to their
implications on the possible symmetries of the biaxial
phase. The conclusions of the present study are collected in
Sec. VIL

Il. THE POSSIBLE SYMMETRIES
OF BIAXIAL NEMATICS

For the purposes of the present work, a biaxial nematic
liquid crystal is defined as a positionally disordered fluid that
has at least one macroscopic second-rank tensor physical
property Q,p exhibiting three different principal values
Oxx# Qyy # Q4. For each such property, a set of unit vec-
tors (n'9, 19 m?) identified with the directions of the prin-
cipal axis frame (PAF) of the tensor property is defined. In
the absence of symmetry axes or planes, each independent
tensor property of the medium has in principle its own dis-
tinct PAF. Such a medium is termed as polar biaxial if, in
addition to the nonvanishing second-rank tensor properties, it
has at least one nonvanishing macroscopic vector property p.
Clearly, the existence of an axis of higher than twofold rota-
tional symmetry renders the phase uniaxial and, in that case,
only vector quantities in the direction of the symmetry axis
can survive (polar uniaxial nematics). Conversely, a nonva-
nishing vector quantity whose direction does not coincide
with that of a symmetry axis necessarily implies phase biaxi-
ality together with phase polarity.

Restricting our considerations to achiral, apolar biaxial
nematics, the lowest possible symmetry for such phases cor-
responds to the triclinic point group C;. In this case, the
triclinic biaxial phase (Ng,) has no unique director [Fig. 1(a)]
and different macroscopic tensor properties Q and Q' define
in general different triplets of unit vectors (n‘@ 1@ m(@)
and (n©"7,19", m©@"), with the inversion symmetry imply-
ing the “apolarity” of any such triplet, i.e., the physical
equivalence of (‘2,19 m@) to (-n'?,-1?9),—m'?). The
next level of symmetry for the apolar, achiral biaxial nemat-
ics corresponds to the C,, point group. In this case, the
monoclinic biaxial phase (Ng,) has one unique director that
coincides with the twofold symmetry axis and is a common
principal axis for all the second-rank tensor properties of the
system [Fig. 1(b)]. The other two principal axes for each
such property are on the symmetry plane perpendicular to the
twofold axis but are otherwise oriented differently for differ-
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FIG. 1. Possible symmetries of the achiral, apolar biaxial nematic phase: (a)
The triclinic biaxial nematic phase (Njz,) corresponding to the C; point
group; no unique director. (b) The monoclinic biaxial nematic phase (Ng,,)
corresponding to the C,;, point group; one unique director (twofold symme-
try axis). (¢) The orthorhombic biaxial nematic (Ng,) corresponding to the
D,,, point group; a unique triplet of directors.

ent tensor properties. The phase is separately symmetric with
respect to the inversion of the unique director and the inver-
sion of any direction on the symmetry plane. The only pos-
sibility of higher than C,;, symmetry for the apolar, achiral
biaxial nematic phase is that of the orthorhombic D,; point
group. It is only in this case that the phase has a unique
triplet of directors (n,1,m) (coincident with the three two-
fold axes) forming the common PAF for all the second-rank
tensor macroscopic properties [Fig. 1(c)]. Furthermore, all
the physical properties of this orthorhombic biaxial phase
(Ng,) are invariant with respect to the separate inversion of
each one of the three directors (m,I,m). Lastly, on the
grounds of second-rank tensor properties alone, a D,;, sym-
metry with n>2 qualifies the phase as uniaxial.

lll. THE ALIGNMENT OF BIAXIAL NEMATICS

Clearly, of the three biaxial apolar, achiral symmetry
types of nematics described in Sec. II, namely, the triclinic
Np,;, the monoclinic Ng,, and the orthorhombic Np,, full
three-dimensional (3D) alignment with respect to all the an-
isotropic properties of the medium along a common set of
thee orthogonal directions is possible to achieve only in the
latter. In other words, aligning any two of the directors of an
Npg, medium (say, aligning one director by surface anchoring
and another by application of an external electric field in an
orthogonal direction) automatically fixes uniquely the direc-
tions of the three principal axes for all the tensor properties
of the medium. In the case of an Nz, medium, aligning two
principal axes in mutually orthogonal directions will in gen-
eral not be possible geometrically if these axes correspond to

different tensors [say, n'@ and m@" of Fig. 1(a)]. On the

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



124516-3 Symmetries and alignment of biaxial nematics

(2)

(b)

FIG. 2. Possible alignment of the monoclinic, Np,,, biaxial nematic phase:
(a) Degenerate-planar alignment of the symmetry axis n on a flat substrate
simultaneously with the alignment of the dielectric principal axis m)
perpendicular to the substrate leads to the distribution of the optical axes
m© and 107 on the surfaces of two cones with apertures u‘>°?) and
/2 —u'*°™ | respectively. (b) Nondegenerate homeotropic alignment of n
perpendicular to a flat substrate with a rubbing direction R does not neces-
sarily bring any of the axes m®®, 1€, m©pY_ 1©PY in alignment with R.

other hand, if the two axes belong to the same triplet [say,
n@ and m'Q of Fig. 1(a)] and their simultaneous alignment
in mutually orthogonal directions is achieved by some
means, this will not imply that any of the axes belonging to
a different triplet [say, n©", 1€, or m@" in Fig. 1(a)] will
be found parallel to either of the aligned directors or normal
to the plane formed by them.

For an Ng,, medium, the simultaneous orthogonal align-
ment of the single symmetry axis of the phase [say, n in Fig.
1(b)] and any of “transverse” principal axes [1'2), m@, 19",
m@") in Fig. 1(b)] is obviously always possible geometri-
cally but, unlike the N, medium, this does not single out on
the symmetry plane two common directions for all the tensor
properties. Thus, for example, the degenerate-planar anchor-
ing of the symmetry axis n [Fig. 2(a)] on a substrate with
simultaneous electric field alignment of the static dielectric
principal axis m® of the medium perpendicular to the sub-
strate would lead to a distribution of the transverse optical
axes m©° and 1°PY (essentially the principal axes of the
optical frequency dielectric tensor, which need not coincide
with the respective axes of the static dielectric tensor) on the
surfaces of two cones about the symmetry axis, as shown in
Fig. 2(a). Similarly, the nondegenerate homeotropic align-
ment of n perpendicular to a flat substrate carrying a “rub-
bing direction” R [see Fig. 2(b)] will not necessarily bring
any of the transverse static dielectric axes, m') and l(”), or
of the optical ones m°" and 1°P, in alignment with the
rubbing direction.

The experimental results in all optic and electro-optic
investigation536’37 that, to our knowledge, have been carried
out to date on the biaxiality of bent-core and tetrapode ther-
motropic nematics have been analyzed on the assumption of
an orthorhombic symmetry, in which case the shift angles
(such as u(*>°PY in Fig. 2) between the transverse principal
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axes of different tensor properties are forced to the “ortho-
rhombic” values O or 7/2. Thus, we are not aware of any
experimental proof that the u-angles in these systems are
indeed O or 77/2 nor of any attempts to detect deviations of
the u-angles from the orthorhombic values. Such deviations
would clearly constitute direct proof of phase biaxiality, even
if the magnitudes of the transverse optical or electric
anisotropies were too small to measure unambiguously. Shift
angles between principal axes are quite common in Smectic
C (SmC) liquid crystals. These tilted and layered systems
exhibit C,;, phase biaxiality, with the twofold axis perpen-
dicular to the tilt plane. Tilt-angle measurements are known
to give appreciable and temperature dependent differences
between the tilt-angle values obtained from optical, x-ray,
NMR, etc.,38_44 methods on the same SmC compound, as
well as differences between the mesogenic-core and pendant
alkyl chain tilt angle:s.‘w44 Furthermore, different tilt angles,
and therefore distinct PAFs, for different properties of the
same compound are obtained as direct theoretical results
from molecular models in which internal flexibility together
with the characteristic aliphatic-aromatic molecular compo-
sition of the SmC compounds are explicitly taken into
account.® ™" In the present context, these differences in the
tilt angles obviously correspond to the shift angles among the
transverse principal axes associated with anisotropic proper-
ties of the C,,, biaxial nematic medium.

The above considerations underline the importance of
proving, rather than simply assuming, the particular symme-
try of the investigated phase biaxiality in optic or eletro-optic
experiments on the new, low molar mass, thermotropic can-
didates of biaxial nematics. However, these types of experi-
ments may not turn out to provide the most sensitive means
for the distinction between the possible symmetry types of
the phase biaxiality, either because of inherent methodologi-
cal complexities related to surface alignment, director gradi-
ents, etc., which could make a slightly deformed uniaxial
system appear as biaxial,"® or because the deviation angles
among optical, dielectric, and surface anchoring directions
might not be sufficiently large to allow a clear differentiation
between the possible point group symmetries. On the other
hand, the manifestations of these symmetries can be more
pronounced on the orientational ordering of certain molecu-
lar segments rather than on the global molecular ordering
underlying the optical dielectric and anchoring anisotropies.
It is then advantageous to use experimental methods, such as
NMR or IR absorbance, which are suitable for the measure-
ment of the orientational order of specifically labeled mo-
lecular sites. These are considered in the next two sections.

IV. BIAXIAL NEMATIC PHASE SYMMETRIES
AND DEUTERIUM NMR SPECTRA

NMR methods are widely used for the study of orienta-
tional order in liquid crystals49’50 and are considered to offer
a reliable way for the characterization of phase biaxiality. In
particular, deuterium NMR methods, involving either di-
rectly deuterated nematic molecules or deuterated probe mol-
ecules, have been used extensively for the study of biaxiality
in nematics.?®>"33°1"55 The measurable quantities in these
methods are the frequency splittings 6v¥) associated with the
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interaction between the deuterium quadrupole moment and
the electric field gradient (EFG) at each of the deuterated
sites i of the molecule in the presence of an applied magnetic
field. The dependence of 8v¥) on the time-averaged orienta-
tion of the deuterated molecular segment relative to the mag-
netic field is given by49’56

501 = %vg){ (%((h 7)) - %)

(i)

+ 720 x)) (b y,»)2>>] (1)
Here, v(Qi) is the quadrupolar coupling constant for the deu-
terated site i (its numerical value is usually obtained from
measurements in the solid state), the angular brackets indi-
cate time averaging, the unit vector h denotes the direction of
the magnetic field, and the unit vectors (x;,y;,2;) denote the
principal axes of the EFG tensor Vi’,i at the deuterated site i.
The assignment of these axes is normally taken to corre-
spond to ascending absolute magnitudes of the principal val-
ues, i.e., so that [V, .| <[V, |=[V__|. Accordingly, the biaxi-
ality of the EFG tensor defined as

V.=V
0o N YiVi
Mo =0 2)

7%

is restricted in the range 0= nEFG_l The actual values of
7/1(31);(; are quite small and in most cases of practical interest

the EFG is taken to have cylindrical symmetry around the

implying UE)FG 0.

To obtain the explicit dependence of 6v”) in Eq. (1) on
the macroscopic orientation of the sample, a phase-fixed
macroscopic frame (X,Y,Z) is intrqduced and a second-rank
symmetric and traceless tensor GX;, describing the orienta-
tional averaging of the field gradient associated with the mo-
lecular site i, is defined with components

deuterium bond direction,57

(i)
GY) ——<<A z)(B - z>>—— ”‘;FG<<<A-X,->(B-X,->>

-((A-y)(B-y))), 3)

where the unit vectors A and B represent the directions of
the macroscopic axes (X,Y,Z). Then, with the direction of
the magnetic field in the macroscopic frame given by the unit
vector components /,, the splitting can be written as

) = SvnhpGly, (4)

with summation implied over the repeated tensorial indices A
and B.

The choice of the macroscopic frame is obvious in the
case of the Np, phase, where the presence of three orthogo-
nal symmetry axes defines uniquely the prm01pa1 axes of all
second-rank tensors, and therefore of G for any site (i).
However, for an Ng,, or Ng, phase, careful dlstinction should
be made between two macroscopic frames, both of which are
directly relevant to the complete analysis of the NMR mea-
surements. One frame is specific to quadrupolar interaction
assoc1ated with the deuterated site and is defined as the PAF
of the G, ® 5 tensor (the G —PAF for brevity) and the other is
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the PAF of the static diamagnetic susceptibility tensor of the
phase (the }"—PAF). The relevance of these two frames is
described in some detail below.

A. The quadrupolar interaction frame

In the GY —PAF, with its axes denoted by (X;,Y;,Z;), the
tensor GXL is diagonal. The assignment of the principal axes
is chosen according to ascending order of the absolute mag-
nitudes of the principal values, |G(’ | = |G(’)y |=< |G(’)
Therefore, GXL in this frame can be fully descrlbed in terms
of the primary order component

sV =Gy, (5)

and the biaxiality parameter
(6)

The primary component S® becomes equal to 1 at per-
fect segmental order [coincidence of the molecular-segment
axes (x,,y,,z) with the macroscopic axes (X;,Y;,Z;)]. The
parameter 5! quantifies the biaxiality of the phase as re-
flected on the orientational order of the deuterated site i and,
according to the assignment of the principal axes, its values
are restricted in the range 0= % =<1. Under the usual as-
sumption of cylmdrlcally symmetric EFG around the deute-
rium bond (77EFG—O) the primary component and the biaxi-
ality parameter can be expressed according to Egs. (3), (5),
and (6) in terms of the azimuthal («;) and polar (8;) angles of
the bond direction z; relative to the G —PAF as

. 3 1 -~ (sin® B; cos 2a;)
) _( = 2 p_ (i) — ’—
S <2cos B; 2>, 7 e By (7)

It then strictly follows from these relations that the physi-
cally acceptable values of S® and 7" are constrained by the
following condition:

SO(9+1)=1. (8)

Irrespectively of any assumptions on the smallness of nEFG,
the values of S and 7 can be determined from the values
of the splittings at two independent orientations of the mag-
netic filed relative to the G’ — PAF. With the angles 6; and ¢;
describing the orientation of h in the (X;,Y;,Z;) axis system,
Eq. (4) assumes the form

3 ol (3 1 ©
S\ = EVS)S(’)KEcosz 0, — 5) + %sinz 0; cos 2¢; |.

)

The dependence of 51 on the angles 6; and ¢; presents two
extrema. One, 5V(1i)=%v(i)5(i), is obtained when the magnetic
field is directed along the Z; axis (i.e., for cos?> §,=1) and the
other, 51/(; ):—%VZ)S(i)(l +7'"), is obtained when the magnetic
field is directed along Y; (i.e., for sin? 6, cos 2¢p,=—1). Given
the numerical value of the quadrupolar coupling constant v(Qi),
the first exteremum yields directly the primary component
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SO =281/30), (10)

while the biaxiality parameter is obtained from the ratio of
two extrema,

. W)
7= 1+2—5 . (11)

Clearly, 6\ =-281", with the equality holding for all the
sites 7 in the case of a uniaxial phase.

While the G —PAF of a deuterated site i is the natural
choice for the description of the orientational order of that
site, the orientation of the liquid crystal sample relative to the
magnetic filed in the actual NMR experiment is normally
determined by the spectrometer magnetic field itself which,
due to the considerable diamagnetic anisotropy of most lig-
uid crystals, becomes the primary aligning stimulus in high-
field NMR experiments. This makes it necessary to introduce
a macroscopic frame of axes, the " —PAF, that is suitable
for the description of the magnetic alignment of the sample.

B. The magnetic susceptibility frame

In the x"—-PAF, with its phase-fixed axes denoted by
(Xy15 Yar.Zyp), it is the magnetic susceptibility tensor x/jp that
becomes diagonal. Assigning the axes according to the as-
cending sequence Xy x =Xy, v, =Xz,z, Of the principal
values, the minimum magnetic energy of an unconstrained
monodomain sample will be obtained when the magnetic
field is along the Z,, axis. If, on the other hand, this axis is by
some means made to form an angle 6,, with the magnetic
field, then the energy will be minimized for X, directed per-
pendicular to the plane formed by the direction of the mag-
netic field and the Z,; axis, i.e., for the values ¢y,= = 7/2 of
the azimuthal angle of the magnetic field in the y"—PAF.

For the N, phase, the x"—PAF has in general no com-
mon axis with the G’ —PAF and therefore the right hand
side of Eq. (4) for the splitting, expressed in the x"—-PAF,
will involve the five independent components of the GXI)9
tensor in that frame, namely,

(0, bpg) = 2 <’)[(%cos2 Oy — )Gg,)sz
+ zsin2 0y cos 2¢M(G§ngM - G%YM)
+ sin 260y(cos ¢MG(zi,)wxM
+sin ¢MGZ YM)
+sin® @) sin 2¢MGYMXM] (12)

First we note that, according to this equation, for the mag-
netically aligned sample, i.e., with the Z,;, parallel to the
magnetic field, the splitting has the value

o’ = 3Gy , . (13)

Similarly, the value of the splitting when the magnetic field
is directed along the Y, axis is

J. Chem. Phys. 131, 124516 (2009)

sl =~ 2GE , + (G, ~Gl)

Yu¥u

)] (14)

Thus, if both the splittings 5vﬁi) and 51/1") can be measured,
the values of the parameters

s = Gz Zyy —25V\|l)/3VQ (15
and
=GPy ~GY )G , =~ (1+26W)151"))

(16)

will be obtained. These two parameters have an obvious for-
mal correspondence to the primary order parameter S and
the biaxiality parameter 7" appearing in Egs. (10) and (11).
However, unless the axes (X,;,Y,,,Zy) happen to coincide,
respectively, with (X;,Y;,Z;)—a coincidence for which there
is no physical reason in a biaxial phase of monoclinic or
triclinic symmetry—the frequencies 51/() and 5v(i) are not
equal to the frequency extrema 51/]’) and 61/(') 1n
Eqgs. (10) and (11), and, as shown below, the values of S
and 7; ) could vastly differ from the values of the order pa-
rameter S and the biaxiality parameter 7", respectively. In
what follows, S(') and 7 (') will be referred to as the “appar-
ent” parameters to stress their distinction from the true pa-
rameters S*) and 7.

Accordlng to Egs. (15) and (16), the apparent parameters
Sz(&) and 1;M are the directly measurable quantities in those
experiments where separate measurements of the splittings
parallel and perpendicular to the magnetic field are possible.
This is usually the case for systems with sufficiently long
relaxation times of the magnetic reorientation. 28313551 How-
ever, knowledge of the apparent parameters S and 77(')
not enough for the evaluation of the true parameters S(’) and
7" except when the biaxial phase is known to be of Ny,
symmetry, in which case the off-diagonal components of GX;
vanish in the x"—PAF as well. Furthermore, in those cases
where a 6y=m/2 configuration of the sample can be
achieved, the angle ¢, is often not sharply restricted to the
energy minimizing values = /2 but, due to relatively weak
magnetic biaxiality, may exhibit a distribution over its full
range. 213135 Thig glves rise to a distribution of splittings in
the range —3 V(I)S (1+ ')) rather than the single sphttmg of
Eq. (14). In th1s case, the relative width of the 51/ distribu-
tion provides a measure of the apparent b1ax1a11ty parameter

(i)

M-

C. Differentiating between point group symmetries

The general relations between the apparent and the
proper parameters are summarized in Appendix A. In the
case of Np, phase symmetry, these relations provide six al-
ternative assignments of S® and 7" for a given pair S(l) and

(') v [see Eq. (A3)]. These alternatives correspond to the six
poss1b111tles of matching the (X;,Y;,Z) with the
(Xu»Yus.2Zy) axes. The acceptable assignment is to be cho-
sen subject to restriction imposed by the definitions of S
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and7”, in particular, S? =<1 and 0= 7 =1, and the mutual
compatibility constraints of the type implied by Eq. (8). The
six matching alternatives between the )"—PAF and the
G —PAF axes of the Ny, are the direct generalization of the
possibility of having positive or negative diamagnetic aniso-
tropy in the uniaxial nematics. There, the Z; axis necessarily
coincides with the director n while the axis of magnetic
alignment can be either along n (i.e., positive diamagnetic
anisotropy, resulting in Z;IlZ,, and therefore S(’)—S(‘)
(’)—O) or perpendicular to n (i.e., negative dramagnetrc an-
isotropy, resulting in Z; 1 Z,; and S(l) -50/2; 5\)= +3). In-
terestingly, a crossover from Z; IIZM toZ;, LZy by varying the
temperature within the same biaxial nematic phase has been
reported for the lyotropic system in Ref. 51.
For Ny, or Ny, phase symmetry, the determination of S
and 7" requires, according to Egs. (A1) and (A2) the knowl-
edge of the off-diagonal components of GY AyByy in addition to

S(') and 7](” In the cases where the splitting can be measured
for a sufficiently large set of different orientations 6, and ¢,
(either individually or in a well defined superposition, such
as a 3D “powder”), the five tensor components appearing in
the expression of Eq. (12) can be evaluated and from those
one can obtain the order parameter S’ and the biaxiality 7"
for the site i as well as the orientations of the respective
principal axes (X;,Y;,Z;) relative to the axes (X, Yy, Zy). If
such complete angular dependence data for the splitting can-
not be obtained, as it is normally the case with low-molar-
mass and/or low v1scos1ty 11qu1d crystals the tensor compo-
nents Gz 2,y (G(’ —GY Y, ), and G can be obtained

by a method combrmng measurements of the splittings of the
statically aligned sample in the magnetic field with measure-
ments of the spectral pattern generated by spinning the
sample about an axis perpendicular to the magnetic field.
This method has been used for the identification of biaxial
order in several instances of SmC (Refs. 58—61) and
nematic>>? phases where it is difficult to achieve a predeter-
mined static orientation of the sample away from its
minimum-energy direction in the magnetic field. The formu-
lation of the method is outlined in Appendix B. From the
phase-symmetry viewpoint, the following points should be
noted regarding its application to biaxial nematics:

(1) As a result of the alignment of the X,, axis along
the spinning axis [cos ¢,,=0 in Eq. (12)], the spectral
pattern has no information on the components Gz) X,
and G(’)
spinning- sample measurements can lead to a complete
determination of the G By tensor only if X, (i.e., the

Accordingly, the combined statrc/

axis of lowest diamagnetic susceptibility) happens to
be a symmetry axis of the phase, in which case both
G%)WX and G would Vamsh by symmetry. In that
case, the measurable angle g in Egs. (B1) and (B2)
would simply be the angle by which the " —PAF has
to be rotated about the X, axis in order for its other
two axes, Y, and Z,,, to be brought in coincidence
with two of the (X;,Y;,Z;) axes of the G’ —PAF (the
third one of these axes necessarily coincides with the
symmetry axis X,,; see Table I in Appendix A). Re-

(i)

(iii)
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garding the site dependence and temperature depen-
dence of the g angles, it should be noted that the
G —PAF of inequivalent sites will, in principle, be
oriented differently relative to one another and to the
X" —PAF; moreover, for flexible molecules, the orien-
tations of the different G’ —PAF with respect to the
X" —PAF could vary differently with temperature as a
result of differences in the conformational motions of
the various molecular segments. Lastly, if X,, is not
known to be a symmetry axis, the rotation about X,
alone would clearly not be enough to bring the
G —PAF in coincidence with the y”"—PAF since ad-
ditional rotations would be required, associated with
the nonvanishing, albeit macces51ble to this measure-
ment, components G()X and GY X
The component G( W would vanish if one of the Y,
and Z,,;, axes happened to be a symmetry axis of the
phase. Therefore, the measurement would yield
sin 2¢W=0 [see Eq. (B2)]. Clearly, however, this
alone, would not imply that the " —PAF shares the
same axes with the G¥—PAF. If, for example, the
phase has a single symmetry axis coinciding with the
direction of Z,,, then the G()fI)WXM component would in
general be nonzero and this would imply that the
X" —PAF and the G’ —PAF are rotated relative to one
another about their common axis Z, by an angle g%)w

that cannot be evaluated from the combined static/
spinning-sample measurements. Consequently, a
measurement in which the result G —O is ob-
tained would specify the G(’) By completely only if it
is known that both Y,, and ZM are symmetry axes of
the phase (i.e., if the phase is Ny,).

Whatever the symmetry of the biaxial phase, the com-
bined static/spinning-sample measurements can al-
ways yield the values of the apparent parameters S
and 77(’) However, the relation of these parameters to
the true ones, S and %", depends not only on the
symmetry of the phase but also on the specific asso-
ciations of the (X,;,Yy,2Zy) and (X;,Y;,Z;) with the
symmetry axes of the phase (when present) and with
one another. These relations are given in Eq. (A3) for
the case of an orthorhombic biaxial phase (D,;) and
are summarized in Table I of Appendix A for a biaxial
phase of monoclinic symmetry (C,;). The respective
detailed relations in the case of triclinic symmetry
cannot be established within the combined static/
spinning-sample measurement scheme due to its
aforementloned 1nab111ty to provrde the values of the
components G and G . Accordingly, for tri-
clinic phase symmetry, or monoclinic in which the
maximum magnetic energy axis X, does not coincide
with the symmetry axis of the phase, a technique al-
lowing the recording of &v) for configurations in
which neither X, is perpendicular nor Z,, is parallel
to the magnetic field would be required for the deter-
mination of S¥ and 7. For example, in those cases
where a sample with 8,,=m/2 and ¢,, distributed can
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124516-7 Symmetries and alignment of biaxial nematics

be achleved the spectral pattern ylelds in addition to
and 77 ). the value of the Gy X, component.

To assess the 1mpl1cat1ons of a monochmc symmetry on
the apparent parameters st M ) and 7;M and their relation to the
proper ones S® and 7, we consider in some detail one of
the nine different symmetry axis assignments listed in Table
I of Appendix A. Analogous implications apply for the other
assignments. We choose the case where the principal axes
Xy and X; coincide with the twofold axis (top left cell of
Table 1) of the phase for which the angle u'%w%)=g® to-
gether with S;’; and 7/1("4) can be measured with the static/
spinning-sample scheme. The important implications stem
from the appearance of u'“#%) in the relations between ap-
parent and proper parameters. Thus, according to the relation
(second equation in the top left cell of Table I)

o — 300 - 7N/3 + 57)] + cos 2uZm?)
e = [(1=27D/3 + 7))+ cos 2uPm?)

; (17)

a large apparent biaxiality 7]M can be obtained even if
the proper biaxiality 7 is negligible. For example, for

u?mZ)=30° and 7?=0, this equation yields an enormous
apparent biaxiality 7/(’)——0 6 (note that, unlike 7", the val-
ues of the apparent biaxiality nM are not restricted in the
range of 0-1). Conversely, a negligible apparent biaxiality
may be measured even if the proper biaxiality is large in
case the value of cos2u®%) happens to be close to
3(1=2%")/(3+ 7). For example, a sizable proper biaxiality
of 79=0.2 would lead to negligible apparent biaxiality,

(’)~O if the angle u'“#%) was around 20°. Furthermore,
7]5& may exhibit a markedly different temperature depen-
dence from the one typically expected for 7 due to the
additional variation caused by the temperature dependence of
the angle u“#%), whose absolute value is normally expected
to increase with decreasing temperature (increasing biaxial
order of the phase). Perhaps more importantly, the apparent
primary order parameter S( may exhibit “anomalous” tem-
perature dependence, namely, decrease with decreasing tem-
perature, if the rate of increase in the magnitude of u#m%)
with decreasing temperature overcompensates for the rate of
increase in the proper primary order parameter S, This can
be readily demonstrated by differentiating the relation (first
equation in top left cell in Table I of Appendix A)

3 1
S(l) S(')|:<50082 uZmZ) _ 5) _ gsiHZ M(ZM’Zi):| (18)

with respect to the temperature to obtain

dS(t) (dS(i))% (dﬂ(i)> SW gin? yu%mZ)

dr ~\ar )s9 "\ ar 2
d(sin? u?m?)) \ $V(3 4 70
_( ( )\ G+ 7" (19)
dTr 2
Normally, the temperature derivatives of S® and of
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sin? um%) are negative while both signs are possible for the
derivative of 7?. Accordingly, depending on the relative
magnitudes of these derivatives and of their coefficients for
each moleculap site i, a positive (anomalous) temperature
derivative of 51(114) may be obtained for some sites and negative
(regular) for others on the same molecule. Lastly, it follows
directly from Eq. (18) that a negligible apparent primary
order S;’} can be obtained for a site that has high S© if
the angle u“v7) for that site is close to satisfying
sin> u@n%)=2/(3+5"). In this case the apparent biaxiality
7]53 acquires divergently large magnitudes. Such instances
have been observed in the biaxial order of the SmC phase of
conventional calamitic compounds,60 where u%mZ) yalues as
large as 50° have also been measured.

The above symmetry considerations for quadrupolar
splittings apply to dipolar coupling interactions as well as
chemical shift asymmetry (CSA) interactions: In phases of
lower than Ny, symmetry, the PAFs associated with these
interactions need not coincide with each other nor with the
respective PAFs of the quadrupolar interactions or the

X"—PAF of the phase. Conversely, a relative deviation
among any of these PAFs constitutes direct proof of phase
biaxiality. It should be noted, however, that appreciable rela-
tive deviations are to be expected between the PAFs of mo-
lecular segments that undergo substantially different mo-
tional averaging. As it is often the case in conventional
calamitic SmC, deuterated sites that follow closely the ori-
entational ordering of the mesogenic core, which essentially
determines the diamagnetic susceptibility tensor of the
phase, show marginal deviations of their G’ —~PAF from the
X" —PAF of the phase, even for strongly tilted, and therefore
biaxial, compounds.60 The analysis of the spectral patterns in
the presence of CSA is outlined in Appendix B.

V. MOLECULAR ORIENTATIONAL ORDER
MEASUREMENTS BY POLARIZED IR
SPECTROSCOPY

Polarized IR absorption measurements have been used
for the study of molecular-segment orientational order in
connection with the identification of nematic phase
biaxiality.34 The absorption of the IR beam depends on the
direction of its polarization relative to the orientation u® of
the transition dipole moment associated with the respective
absorption band. The anisotropic part of the IR absorption in
a nematic liquid crystal is conveyed by the second-rank sym-
metric and traceless absorbance tensor A AR defined in terms
of the orientational averages of the transition dipole moment,
with components

Ay~ AD (- ) B) - 2. 20

Here the superscript (i) refers to the molecular segment in
which the transition dipole is situated, A0 is the absorbance
strength parameter, and A and B denote unit vectors along
the axes (X,Y,Z) of a macroscopic phase-fixed frame. The
absorbance tensor components are the fundamental measur-
able quantities in IR absorption experiments on oriented
samples. The phase-symmetry implications on the tensor AX;
are analogous to those discussed in detail for the field-
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gradient tensor G(’B underlying the deuterium NMR spectra
and may be summarized as follows:

(i) A macroscopic PAF (the A®”—~PAF) can be defined
for the absorbance tensor for each transition dipole
moments u on the molecular structure. The
principal values of each absorbance tensor can be
expressed in terms of a primary order parameter
SO (=AY /A) and a biaxiality 7? (E(A(i)

A(Yiyi)/ A(l Z) whose values, with proper a551gnment

of the prrncrpal axes, satisfy the constraints of Eq. (8).

(i)  The AY—PAF of different transition dipole moments
' will strictly coincide only if the biaxial phase is of
the Np, symmetry. For Ng,, symmetry, the different
AY—PAF will have one common axis, the symmetry
axis of the phase, and in general will differ by a rota-
tion about that axis. The angle of this rotation can be
determined experimentally by measuring the angular
dependence of the absorbance of different bands
about the symmetry axis.

(iii)  For Ng, symmetry, the A”)—PAF of distinct sites will
in general have no common axis, and experimental
determination of their relative orientations requires a
full 3D angular dependence study of the absorbances.

(iv)  The absorbance measurements are obtained for differ-
ent orientations relative to a macroscopic frame that is
singled out by the sample alignment mechanism (elec-
tric, magnetic, surface anchoring, etc.). To maintain a
close analogy with the preceding description of the
NMR measurements, this frame will be denoted as the
M-frame, with axes (X, Yy, Zy). Except for the case
of Np, phase symmetry, this frame will in general
differ from the A®”’—PAF of the measured band and
therefore the measurement in the two orthogonal di-
rections will yield the values of the apparent primary
order and biaxiality parameters for that band, which
may differ significantly from the values of the actual
S@ and 7. The determination of the latter requires,
in addition to the apparent values, knowledge of the
orientation of the A”)—PAF relative to the M-frame.

Rather than describing the orientational order of the mol-
ecules merely in terms of a collection of absorbance A%
tensors associated with different molecular sites, it is pos-
sible, under certain conditions, to construct the ordering ten-
sor of the entire molecule by combining the information
from the different segments. To this end, a common molecu-
lar frame (x,y,z) and a common macroscopic frame (X,Y,Z)
are singled out for all the molecular sites, and the ordering
tensor S45 of the molecule is formed from the average ori-
entations of the molecular axes (collectively represented by
the indices a and b) relative to the macroscopic frame axes
(A and B indices) as f;% 2<(a -A)(b- B)}— Then, under
the assumption that the reorientation of the transition dipoles
relative to the molecular frame are to a good approximation
statistically independent of the reorientations of the molecu-
lar frame relative to the macroscopic frame, in short the “re-
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orientation decoupling approximation” (RDA), the absor-
bance tensors AXL for such transition dipoles can be
expressed as

Aflp = ASis (21)

In this expression AS;:AS)@(M(")~a)(u(i)-b)—%) are the
conformational components of the absorbance tensor, which
are determined by the motional averaging of the transition
dipole direction relative to the axes of the molecular frame.
Knowledge of these tensors for a sufficient number of inde-
pendent transition dipoles would allow the determination of
the molecular order tensor S in terms of the measurable
absorbance components A A quite analogous procedure
can be applied for the ﬁeld gradlent tensor components GY AB
which are measurable in deuterium NMR experiments. The
RDA is obviously valid for those of the transition dipoles
that are rigidly fixed with respect to the molecular frame.
However, in the presence of extensive conformational mo-
tions, quantitative validity of the RDA becomes questionable
and the simple approach based on Eq. (21) has to be re-
placed by a more accurate one, taking into account the
correlations between conformational motions and molecular
reorientations.*’

Within the RDA, the number of independent components
of the order tensor SZ% required in Eq. (21) for the complete
description of the absorbances depends on the symmetry of
the phase and of the molecules. In the most symmetric case,
wherein the molecules are cylindrically symmetric and the
phase is Np,, the independent components are just two,
which, with the usual assignment of axes, are S=S7, and
P =S5~ S5y This case, however, implying higher molccular
syrnmetry than the symmetry of the phase would be appli-
cable to solute molecules in a biaxial phase rather than to
molecules which actually self-organize to form such phase.
The molecules that do form a biaxial nematic phase need to
be of at least orthorhombic symmetry. In that case, two ad-
ditional independent components appear, conventionally
chosen to be D=S57,—-5%, and C=Syy—S¥y—Syy+Syy. For
molecules of monoclinic symmetry forming an Np,, the num-
ber of independent components is 9 and in the most asym-
metric combination of triclinic (achiral) molecules in an N,
phase, the number of independent components of SZ% mounts
to 25. Consequently, the practical applicability of the repre-
sentation of the absorbances in terms of the molecular order
tensor Sfjfg is essentially restricted to high symmetry mol-
ecules in the Np,, even when the RDA is expected to hold
reasonably well.

VI. DISCUSSION

The presently available experimental results on biaxial
nematics, viewed in the light of the theoretical symmetry
considerations of Secs. II-V, lead us to the following infer-
ences: The detailed NMR investigations on lyotropic biaxial
nematics™' seem to consistently establish a D,;, assignment
for the symmetry of these systems. Also, the analysis of the
existing optical30 and NMR data® on the side-chain biaxial
nematic polymers is not inconsistent with that symmetry. In
contrast, an analogously consistent assignment has not been
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presently reached for the bent-core™ or for the tetrapode
thermotropic systems.34 Specifically, the deuterium NMR
measurements by the static/spinning-sample technique on
bent-core nematics>>>> have yielded marginal values for
the biaxiality parameter 7 of certain deuterated sites on the
molecular core. These particular sites, however, turned out to
be insensitive to the biaxial order even in the SmC phase of
the same compounds. On the other hand, measurements us-
ing deuterated probe solutes have yielded quite reasonable 7
values, on the order of 0.1, which signal the presence of
biaxial order in the nematic phase of these compounds.
Clearly, however, this set of observations is too limited to
prove or disprove any of the possible symmetries for the
biaxial nematic phase. According to the considerations in
Sec. IV, a definitive symmetry assignment on the basis of a
NMR study would necessitate a more comprehensive set of
measurement, combining quadrupolar splittings from several
structurally inequivalent deuterated sites together with dipo-
lar coupling and possibly CSA data.

The calamitic-tetrapode nematics have been investigated
for biaxial order by deuterium NMR and by IR spec-
troscopies. Deuterated probe solutes were used for the NMR
studies, which included measurements of splittings parallel
and perpendicular to the aligning magnetic field® as well as
measurements of spinning-sample spectral patterns.54 These
studies have yielded unusually high values for the biaxiality
parameter 7 which are not physically compatible with the
simultaneously measured values of the order parameter S at
the low temperature end of the biaxial nematic phase as they
grossly violate the constraint imposed by Eq. (8) on the ac-
ceptable values of these parameters. Since, however, these
values are obtained by means of an analysis which, in addi-
tion to adopting a D,;, symmetry for the investigated phase,
involves a sequence of other assumptions regarding the sta-
tistics and dynamics of motional averaging, it is difficult to
trace back the source of incompatibility between the final
results on S and 7. The same tetrapode compounds have also
been studied by IR absorbance.”* The measurements were
analyzed on the basis of orthorhombic symmetry both for the
phase and for the molecular structure. Following the method
of Eq. (21), the results were expressed in terms of the four
molecular order parameters identified in Sec. IV for that
combination of symmetries. The calculated values of the or-
der parameters S and P appear to be very close to violating
the strict physical constraint S+|P|=55,+|S%—S%|=1 to-
ward the low temperature end of the nematic phase. Further-
more, the results of the IR study seem to differ qualitatively
from those of the NMR study with regards to the molecular
mechanism that gives rise to the biaxial order. Thus the ma-
jor biaxial order parameter according to the IR results is P,
which is insensitive to molecular biaxiality and should van-
ish as the system tends to perfect biaxial order, while in the
NMR study the observed biaxial order is attributed primarily
to the order parameter C, which reflects directly the molecu-
lar biaxiality and tends to its maximum value as the system
tends to perfect biaxial order. Additionally, within the latter
interpretation, it is not straightforward to justify how an es-
sentially uniaxial probe solute molecule in a biaxial medium
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that is dominated by the order parameter C would give rise to
the measurement of rather high values (7~0.8) for the bi-
axiality parameter.

Phase biaxiality in bent-core nematics has also been in-
vestigated using polarized Raman scattering.62 The method is
based on the quadratic relation between the measurable scat-
tering intensity and the second-rank differential polarizability
tensors associated with the molecular deformation modes.
The angular dependence of the scattering intensity provides
information on the second- and fourth-rank components of
the orientational distribution function of the molecules in the
anisotropic phase. The analysis of the measurements was car-
ried out in Ref. 62 over the full temperature range of the
nematic phase on the assumption of D,;, symmetry for the
biaxial order and yielded values for the second- and fourth-
rank order parameters from which the presence of substantial
biaxiality in the nematic phase was deduced. However, the
reported set of order parameter values lacks internal consis-
tency. Thus, for example, the values of the second-rank order
parameters (P, and (P,yy), in the notation of Ref. 62
(which correspond, respectively, to the order parameters
S and 6P in the notation of Sec. V), present a clear
and systematic violation of the consistency constraint
(Poo) +6|{Pyp)| =<1 for decreasing temperature in the nem-
atic range. This discrepancy can be removed on relaxing the
assumption of D,, symmetry, although other assumptions
involved in the determination of the order parameters from
the measured intensities may also affect the reported values
significantly.

While the preceding considerations suggest that the as-
signment of an orthorhombic biaxial symmetry is far from
being established on the basis of the present experimental
evidence for the thermotropic nematic phases of the bent-
core and the calamitic-tetrapode systems, there are several
experimental observations on these systems that would in
fact disfavor an orthorhombic symmetry. In particular, x-ray
diffraction studies on bent-core’ > and on structurally similar
compounds to the calamitic tetrapodes, including the side-on
monomers and the octapodes64’65 are indicative of the pres-
ence of local biaxial order with tilted layers in the nematic
phase. The observed macroscopic biaxial order is argued to
result from the mutual alignment, spontaneous or externally
induced, of these local biaxial structures.®® Furthermore, in
the cases where a higher order mesophase is obtained at
lower temperature for any of these compounds, it is invari-
ably of tilted structure, be it tilted smectic®’ or tilted
columnar.**%3 Naturally, these considerations would support
the likelihood of a monoclinic, Cy;, or a triclinic, C;, sym-
metry. However, the monoclinic symmetry for the biaxial
nematic phase of both types of compound is favored over the
triclinic symmetry by (i) the presence of at least one plane of
symmetry in both the bent-core and the tetrapode molecules
(the symmetry being understood in the statistical sense due
to the large number of conformations exhibited by both cat-
egories of molecules) in conjunction with (ii) the fact that in
all the cases where a more ordered mesophase is obtained on
lowering the temperature, this mesophase does have a plane
of symmetry.
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VIl. CONCLUSIONS

The possible point group symmetries of an achiral, apo-
lar biaxial nematic phase are three: D,; (orthorhombic), Cy,
(monoclinic), and C; (triclinic). Our critical review of the
presently available experimental results on phase biaxiality
in bent-core and in calamitic-tetrapode thermotropic nemat-
ics suggests that (i) the hitherto routinely assumed, both in
theory and in the interpretation of measurements, orthorhom-
bic symmetry may very well not be applicable to these sys-
tems and (ii) there are strong indications in support of the
monoclinic symmetry. We have identified possible manifes-
tations of the different symmetries on the alignment of biax-
ial nematics and showed that they could have profound im-
plications on the detection of phase biaxiality in nematics, on
its consistent quantification, and on its exploitation in
electro-optic device applications. We have presented in some
detail the methodology for the differentiation between the
three possible phase symmetries with two of the most pow-
erful and commonly used experimental techniques for the
measurement of phase biaxiality, namely, deuterium NMR
and IR absorbance spectroscopies. Clearly, for the complete
and consistent specification of biaxial order in nematics it is
necessary to measure not only the biaxiality parameters 7
associated with the various macroscopic second-rank tensor
properties of the material but also the relative orientations of
the PAFs of these tensor properties.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement No.
216025-BIND (Biaxial Nematic Devices).

APPENDIX A: INVARIANCE EQUATIONS
AND TENSOR COMPONENT RELATIONS

In this appendix we summarize the relations between the
components of the G% tensor in the two PAFs introduced in
Sec. IV, namely, the GY—PAF and the xX"—PAF. It is re-
called that the assignment of the axes (X,,Y;,Z;) and
(Xus5Yus-2Zy) of these frames corresponds to ascending prin-
cipal values of the orientationally averaged field-gradient
tensor (|G§3Xi| = |G(12Y,-| = |Gg,-)z,-|) and of the magnetic suscep-
tibility (xXx, x, =X¥, v, =Xz,z,)» respectively.

Using the second and third order rotational invariants
G(’ G(l) and G(’) Gy @ Gg‘, the following general relations can
be obtalned between the parameters S and 7" of Egs. (5)
and (6), the apparent ones S(l) and 7 (’) of E?s (15) and (16)
and the off-diagonal components G G. and G

ZyXyp
of the G}, in the " ~PAF:
(SO + (7)) = (SiD*3 + (1))
+AL(GRy, )+ (G 7 )

YMZM
+(GY) )]

ZyYy®

(A1)

and
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= (7)) = (S3°(1 = (7))
(0] (@)
+ SGXMYMG G

YuZu~ ZuXy

(s3(1

+ 28300+ D(GY 5 )+ (1= 7))

X(GY) , )*=2(GY y ).

Xu¥m

(A2)

If the phase is known to be orthorhombic, in which case all
the off-diagonal components vanish by symmetry, these
equations yield the following solutions for the measurable
(apparent) parameters S( and 7;(’) in terms of S® and 7?:

S(I) S(l) 77%1) = + 77( )’
s ) 3+ 77(i)

S5(4)=7(i 77(1)_ l)’ n}tll)= 15 7](1')5 (AS)
NN ) ) 3+ 77(1')

SO = (+ (1)_1’ () _ _ _
M=y (7 )s My 1 = 77(,)

Each of these six solutions corresponds to one of the six
distinct ways of matching the (X,;,Yy,Zy) with the
(X;,Y;,Z;) axes.

The respective relations in the case of monoclinic biaxial
symmetry depend on which one of the (X,;,Y,,Zy) axes
and of the (X;,Y;,Z;) axes coincide with the single twofold
symmetry axis of the phase and involve the angle by which
one frame is rotated relative to the other about the common
symmetry axis. The relations for the nine different identifi-
cations of axis pairs with the symmetry axis are listed in
Table I.

APPENDIX B: CALCULATION OF DEUTERIUM NMR
SPECTRAL PATTERNS FROM ORIENTATIONALLY
DISTRIBUTED BIAXIAL NEMATIC SAMPLES

1. Outline of the deuterium NMR spinning-sample
method

Briefly, this method involves (i) using the static measure-
ment to extract the ng)w » component from the value of
the splitting of the magnetically aligned sample according
to Eq. (15) and (ii) analyzing the spinning-sample spectral
pattern in order to extract the Values of the biaxial,
(G;I)WXM—G() Yy ), and the off-diagonal, GZ v, components.
In the simplest 1mplementat10n of such analys1s the spinning
of the sample is assumed to generate a uniform planar dis-
tribution of Z), in the plane perpendicular to the spinning
axis (and therefore containing the magnetic field), with the
X, axis remaining perpendicular to the magnetic field (and
therefore parallel to the spinning axis) for all the distributed
orientations of Z,, relative to the magnetic field. Under these
assumptions, cos ¢),=0 in Eq. (12) and therefore the com-
ponents Gg) X, and G(;I)WX do not contribute to the spectral
pattern. The latter is governed by the following 6,, depen-
dence of the spinning-sample splittings:

8 (0y) = 3VITED + F cos 2(6,,— g1, (B1)

where
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(i)
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TABLE I. Relations between the apparent parameters SXI) and 7}, of Egs. (15) and (16) and the true parameters S and 7 of Egs. (5) and (6) in a biaxial
phase of C,;, symmetry. Each one of the nine cells of the table corresponds to a distinct identification of the twofold axis of the phase with the indicated pair
of axes from the principal frames (X;,Y;,Z;) (the G”=PAF) and (X,;,Y;.Zy) (the x"—=PAF). The angle g of relative rotation of the two frames about their
common symmetry axis is identified with the angle u“#5) formed by the pair of principal axes A, and B; and is expressed in terms of the tensor components
in the x"—PAF for each of the nine possibilities. For notational simplicity the site superscript (i) is omitted from the expressions in this table.

Symmetry axis X;

Y.

i

Z.

i

3 1
SM:S[<50052 g- 5) - %]sin2 g]

3(1 —cos 2g) — 7(3 + cos 2g)

Xy nM:_(3 cos 2g+ 1) — 5(1 = cos 2g)

tan 2 2GZMYM
an 2g =
GZMZM - GYMYM

g= uZmZi) = (YY)

3 1
Sy= [<Ecos2 g- E) - %7sin2 g]

3 1
SM:S[(ECOSZ g- E) + gsin2 g:|

N
SM:_E(I — 7 cos 2g)

_ 3(1 = cos 2g) + (3 + cos 2g) 3+ mcos2g
= (3 cos2g+ 1)+ 5(1-cos2g) = 1 - 1ncos2g
-2G, y 2Gy y
tan 2g = e tan 2g = A
GZMZM - GYMYM GZMZM - GYMYM
g= u\ZmZi) g= u YY)

3 1
SM=S|:(ECOSZ g- 5) + gsin2 g}

S
SMz_E(l + 7mcos 2g)

_ 3(1 —cos 2g) — (3 + cos 2g) B 3(1=cos2g)+ (3 +cos 2g) _3-mcos2g
Yy, 77M_(3 cos 2g+ 1) — n(1 —cos 2g) = (3 cos2g+1)+ n(1-cos2g) 77M_1+7;cos2g
-2G 2G -2G
tan 2g = <t tan 2g = <l tan 2g = Zuus
ZuZn ~ Ox,%,, 2z~ Ox,%,, I G
g= uZm.Z)) g= uZmZ) = 1 Xpr.Xi) g= X Xi)
S S
SM=—5(1—7/) SM=-§(1+77) Su=S
3+7 3-7
My =— cos 2g Ny = cos 2g _
Zy -7 l+7 My =17 €OS 28
2G 2G -2G
tan 2g = Sl tan 2g = Sl tan 2g = Sl
Gx,x,, = Gr,v, Gx,x,, = Gv,v, Gx,x,,~ Ov,v,
g=u"m Y) g:uo(M»xi) g:u(vayr)zu(XM»XI)
" 55‘? ® For the case of C,;, symmetry and X,, coinciding with
1] . . .
EY = 7(1 = M) the symmetry axis, Egs. (A1) and (A2), combined with Eq.
(B2) lead to the following relations, from which $© and 7®
can be directly evaluated from E® and F:
. Sy R O\ 2
F= \/<7(3 #ah) | (6" " (%) (3 + (1)) = (FO) + 3(E),
B4
4G§£)z SO i))2 i Y2 Y2 .
it ) =) = O - ().

tan 2 O = — 0,
SCTTER)

and the line shape generated by the spinning-sample spectra,
in the absence of line broadening, is described, to within an
overall scale constant, by the function®!

LO(v) = ((F(i))Z _ (4_”) B E(l.))z)—l/z

(i
3VQ
) 4 ) 2\ -1/2
+<(F(’))2—<ﬁ+E(”)> : (B3)
(9]

The peaks of this symmetric line shape at v==* 30
X[EW + F]/4 provide the values of the parameters E) and
FY_Then the angle g can be obtained from the splitting of
the aligned sample using Eq. (B1) for 6,,=0 (see Fig. 3).
Having evaluated E¥), F¥), and g", the values of the appar-
ent parameters S;;) and 7]53 and of the off-diagonal compo-
nent G(;LZM are obtained through Eq. (B2).

It should be noted that these relations do not involve the
angle g'”; the latter is to be evaluated independently from the
aligned sample splitting through Eq. (B2).

Deviations from the idealized conditions assumed in the
derivation of the line-shape in Eq. (B3) and Fig. 3 include (i)
possible nonplanarity and nonuniformity of the distribution
of the principal diamagnetic axis Z,; in the plane perpendicu-
lar to the spinning axis, (ii) the presence of line broadening
and, (iii) most important at high spinning rates, the interfer-
ence of the sample-spinning frequency with the frequency
variable v of the line shape. The details of the spectral analy-
sis taking into account such deviations are considered in
Refs. 53, 61, and 68.

2. Spectra with chemical shift asymmetry

For a deuterated site exhibiting CSA,” the frequencies
of the quadrupolar spectrum involve, in addition to the aver-
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(a)
V= FO+EY =y,
‘ =—(F"-E?) vl =—v,
f
(b) v

vy =V, E‘”+F“’(1 2sin’ g“))

%9

FIG. 3. (a) Spinning-sample line shape calculated according to Eq. (B3) for
a deuterated site in the case where X;lIX,, and using the value 7=0.2 for
the biaxiality parameter. The frequencies are expressed in units of 300/4.
(b) The calculated spectrum for the same deuterated site obtained from the
magnetically aligned sample using the value of 25° for the angle g in
Eq. (B2).

age field-gradient tensor Gf&, the CSA tensor C s Whose
PAF, the C"—PAF, need not necessarily coincide with the
G —PAF. In this case Eq. (12), describing the splitting of a

symmetric quadrupolar spectrum, should be replaced by a

lSO

+ %V(Qi)[(%cosz Op — %) (‘)

= (6yy,c08 by =0) = v, (1 + 0 ))+VL0'([)[(%COS Oy

Here v; is the Larmor frequency of the deuteron, and
o and 0(2’)

o denote, respectively, the isotropic and aniso-

tropic (rank 2) CSA coupling constants™ for the deuterated
site i. Defining the relative CSA strength parameter
)\(i)E4VL0'§l)/3V(QI) and the tensors

G(l)+ = GX) 5

AMBM M=M

=\ (B6)

the spectral frequencies of Eq. (B5) can be written as

—3)CY 5 = 3sin? Oy(C

- %sin2 0,y cos 2¢M(G§£LXM (’)

J. Chem. Phys. 131, 124516 (2009)

(a)

v, = P - g0

_ —(F""* _ E""*})

(i)+ i)+ _
F7"+ B =)

(I + a'”)

7(F")’ +E‘“’)

(b)

vy =EV"+ FY" —2F" sin* g

ED* + FO* —2F " sin® g% =y

FIG. 4. (a) Spinning-sample line shape calculated according to Eq. (B10)
for a deuterated site in the presence of CSA and for X;lX,,. The input
parameter values of the calculation are A =0.1 for the CSA relative strength
parameter; S7=0.7, %?=0.2, and g?=20° for the quadrupolar G-tensor
parameters; S9=0.7, 77=0.4, and g?=35° for the CSA C-tensor param-
eters. The frequencies are expressed in units of 3V(Qi)/ 4. (b) The calculated
spectrum for the same deuterated site obtained from the magnetically
aligned sample.

more general expression describing the two frequencies v¥*
of the asymmetric spectrum. For X, directed perpendicular
to the magnetic field (i.e., cos ¢,,=0) these frequencies have
the following dependence on the angle 6,

- C(;})WYM) + sin 26y, sin ¢Mcgl)\/lYM]

) + sin 26y, sin ¢MG§) YM]‘

(BS)

|

107 (By7,c08 by =0)
=y (1+0l)) = 10
X[E(i)i + F(i)i (e 2(0M - g(i)t)], (B7)

with

EO* = (695 ~GY% + G5 4
(B8)

O =BG, + G, = G, )47 + (G,

and
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sin? g~
0=, g 4 4 0y _ S0
EV= 4+ FY= x 3 Gl +0i) = vV (6),=0))
- Yo
B 2F0*

(B9)

The two lines will generate a spectral pattern which, with the
frequency origin placed at v (1 +UF1)), has the expression

180

. . 4y L2\ 2

‘ 4 \2\-12
+ ((F(’)‘)2 - (% + E(’)‘> ) :
3vg

As shown in Fig. 4 the peaks of the line shape provide the
values of the four parameters E?* and F* (in units of
%V(Qi)) which, combined with the values of the aligned-sample
spectral frequencies as in Eq. (B9), lead to the evaluation of
the angles g’=. Then, with the help of Eqs. (B6) and (B7)
0 0 () )
the ter(ls.or corr:gonents(i()?ZMZM, (Gy l?)fM_GYMYM)’ and GYMZM
and CZMZM’ (CXMX _CYMYM)’ and CYMZM can be evaluated. In
the case of C,, (or higher) phase symmetry and with X,,
coinciding with the symmetry axis, this constitutes a com-
plete determination of the tensors GX}B and CXL, and therefore
of the deviation angles of their respective PAFs from the
x"-PAF.
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