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A theoretical model of shape-anisometric particles embedded in a cubic lattice is formulated for binary

mixtures combining rod-like, plate-like and spherical particles. The model aims at providing a tool for

the prediction and interpretation of complex phase behavior in a variety of liquid crystalline colloids,

biological and macromolecular systems. Introducing just repulsive interactions among the particles,

a rich variety of phase structures and multiphasic equilibria is obtained, including isotropic, nematic,

lamellar and columnar phases, demixing into phases of the same or different symmetries and structural

microsegregation of the different species of the mixture within the same phase.
1. Introduction

Understanding the structure–properties relations of complex

molecular systems is a central concern in the field of soft

condensed mater and biology. The physicochemical properties,

the response to external stimuli and/or the biological function of

a wide class of soft molecular systems—including thermotopic

and lyotropic liquid crystals, dendrimers, colloidal dispersions,

block copolymers and bio-macromolecular systems—depend

critically on their intrinsic ability to spontaneously self-organize

into macroscopically ordered mesophases. Understanding the

underlying molecular mechanisms and interactions of sponta-

neous self-organization is a central scientific and technological

challenge towards controlling and optimising the functions of

existing materials and a key step in the molecular engineering of

new materials.

Colloidal suspensions of spherical or anisometric particles and

their mixtures offer a vast variety of order–disorder phase tran-

sitions. The well defined particle shapes and the possibility to

control the interparticle interactions render colloidal suspensions

the mesoscale analog systems for the study of phase transitions in

molecular systems. A classical example is provided by the

seminal work of Onsager on the liquid crystal behavior of

anisotropic rod-like colloids1 and its subsequent great impact on

the development of molecular theories and models for computer

simulations of low molar mass thermotropic liquid crystals.

There are several experimental studies on the spontaneous self

organization and on the phase decomposition of mixtures of rod-

like and spherical particles, where the spherical particle may be

colloidal spheres or biomacromolecules or nonadsorbing poly-

mers.2–6 Apart from the isotropic phase, these mixtures may

exhibit uniform nematic phases and lamellar phases or,

depending on the relative concentration of the two species, they

may demix into phases of different symmetry. For example,

a broad isotropic–nematic coexistence region has been observed7
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at low temperatures in a temperature–concentration phase

diagram of a mixture of rods (low molecular mass LC) and larger

particles (silicon oil). Also, Lekkerkerker et al. investigated

mixtures of colloidal silica spheres with smaller colloidal silica

rods and found that lowering the rod concentration could

facilitates sphere crystallization.8–10

Phase structures and transitions in mixtures of plate-like

colloids with spherical particles have been explored experimen-

tally.11–13 Self-organization into uniform columnar phases, even

for relatively high sphere concentrations, as well as the possibility

of demixing into phases of the same symmetry is found in such

mixtures. There are also experimental studies on the phase

behavior of mixtures of highly asymmetrical rod-like and plate-

like colloids.14,15 These systems exhibit a rich phase poly-

morphism which covers nematic, smectic and columnar order as

well as separation into coexisting phases of any of the above

symmetries. A particular interest for the nematic regime of rod-

plate mixtures has been stimulated by the possibility of forma-

tion of a biaxial nematic phase.16,17

The experimental exploration of mesomorphic mixtures of

anisometric particles has motivated extensive theoretical and

computer simulation studies.17–50 The fragile nature of these

states of soft matter is a result of relatively weak intermolecular

interactions51 which, despite their weakness, are able to support

the macroscopic structural integrity of the bulk phases. A basic

issue in formulating any molecular theory of macroscopic self-

organisation of such complex molecular systems is the extent of

detail to which the structure, the conformations and the inter-

actions of the molecular units are to be described. In our previous

works52–54 we have introduced a general approach to coarse-

grained modelling of complex molecular architectures together

with the statistical mechanical theoretical framework for the

exploration of possible order–disorder phase transitions. In this

work, we extend our previous simple and tractable molecular

theory to describe binary mixtures of anisotropic particles. The

motivation for this work is twofold: On one hand there is

a wealth of experimental knowledge on mesophase formation

and demixing phenomena in anisometric particle mixtures from

the fields of colloid,2–6,13–15 polymer2–6 and liquid crystal2–6,13–15,42

sciences which show interesting similarities. On the other hand
J. Mater. Chem.
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there are numerous molecular theory17,20–23,40,42–50 and simula-

tion19,22,24–28,38,40,42 studies, based on a variety of molecular

models and statistical mechanics approaches, which successfully

reproduce particular experimental observations, thus posing the

challenge of seeking a unified yet simple theoretical description of

the broad range of experimentally observed mesophase struc-

tures and multiphase equilibria. Here we address this challenge

by applying a minimal modelling of the molecular shapes and

primary molecular interactions in the context of a simplified

statistical treatment wherein the molecular configurations are

mapped on a cubic lattice. Considering the simplicity of the

approach, an impressively successful qualitative reproduction is

obtained of the complete phase behaviour in a rich variety of

experimentally studied binary mixtures which combine rod-like,

plate-like and spherical particles.

In the next section we present the molecular modeling and

statistical mechanical framework of the calculations for mixtures

of anisometric particles. In section 3 we present results for rod–

sphere, plate–sphere and rod–plate binary mixtures; we also

discuss the implications of shape anisometry, relative particle

sizes and particle softness on the phase behavior of these

mixtures and we compare our theoretical results with the

experiment. The main findings are summarized and the conclu-

sions of our theoretical study are drawn in Section 4.

2. Molecular modelling and statistical mechanics on
a cubic lattice

Our study concerns binary mixtures in which one or both

components are of anisometric molecular shape, namely rod-like

or plate-like. Each component is assumed to be divided into

a number of blocks, representing well defined submolecular

segments, to which specific interactions are assigned. The total

interaction potential between a pair of molecules is obtained as

the sum of the interactions between all possible intermolecular

pairs of blocks. To expedite the computations, a molecule is

modeled as an array of cubic blocks that is allowed to move and

rotate on a cubic three dimensional lattice. Thus, a rod-like

molecule is represented by a linear string of a number Lr of cubic

blocks of type r (rod). Similarly, a plate-like molecule is repre-

sented by a square two dimensional array of Lp � Lp cubic

blocks of type p (plate). The r as well as the p blocks are treated as

impenetrable objects endowed with purely hard body interac-

tions. A molecule of fully isometric shape, for brevity a spherical

molecule, is represented in this model by a central cubic block c,

which corresponds to the impenetrable core, surrounded by

a layer of type s blocks forming a cubical soft shell. In other

words a spherical molecule is represented by a cube of 3 � 3 � 3

blocks, one of them is a c and the other 26 are s blocks. The soft

shell blocks s are allowed to occupy the same lattice position with

a block of type r or p and these simultaneous occupations are

assumed to increase the potential energy of the system by a fixed

amount u per pair of overlapping s–r or s–p blocks. For

simplicity, the overlapping of s–s and s–c block pairs is allowed

without any change in the intermolecular potential energy. Thus,

altogether the interaction potential Ua,b for a given configuration

of a pair of molecules a,b (which can be any of the rod, plate or

sphere type) receives an infinite contribution if any of the hard

blocks (i.e. of type r or p or c) on the two molecules happen to
J. Mater. Chem.
occupy the same lattice position; these are the forbidden

configurations. For the allowed configurations, Ua,b receives

a contribution u for each intermolecular pair of s–r or s–p blocks

that happen to coincide on a lattice site whilst all the other

relative configurations of the two molecules have no effect on

Ua,b. It should be noted that the inclusion of soft repulsive

interactions between s–r and s–p pairs leads indirectly to effective

attractions between molecules of the same kind in a rod–sphere

or plate–sphere binary mixture.

The statistical mechanics is handled following the general

approach of ref. 52–54 which we here extend to the case of binary

mixtures. For the effectively rigid molecules considered in the

present study, the extension is straightforward and leads to the

following approximate expression for the Helmholtz-free energy

in the thermodynamic limit,

F

NkBT
¼ �

X2

a¼1

xa

8>><
>>:

ln
Ð

d6azað6aÞ þ 1
2

P2
b¼1

ðNb � da;bÞ�Ð
d6a

Ð
d6brað6aÞrbð6bÞ�

expð �Ua;bð6a;6bÞ=kBTÞ

9>>=
>>; (1)

where T is the temperature, kB is the Boltzmann constant, N¼N1

+ N2 is the total number of particles, xa ¼ Na/N is the concen-

tration and za(6a) is the variational weight function of the

molecules of species a (rod, plate or sphere, and similarly for

the index b). The variable 6a ¼ (Ra,Ua) denotes collectively the

position Ra and orientation Ua of a molecule of species a. On

the cubic lattice, the integrals in eqn (1) reduce to summations

over all the lattice sites and the integrals over molecular orien-

tations of the rod-like or plate-like molecules reduce to

summations over the three possible orientations of the molecular

symmetry axis along the cubic lattice axes. The function ra(6a)

denotes the single molecule probability distribution of such

a molecule and is simply the normalized form of za(6a), i.e.

ra(6a) ¼ za(6a)/
Ð

d6aza(6a). The variational weight functions

za(6a) are determined self-consistently by functional minimiza-

tion of the free energy eqn (1), leading to

zað6aÞ ¼ exp"
ðN � 1Þ

 X2

b¼1

xb

�
expð�Ua;bð6a;6bÞ=kBTÞ

�
rbð6bÞ�

expð�Ua;bð6a;6bÞ=kBTÞ
�

0

� 1

!#

(2)

with

hexp(�Ua,b(6a,6b)/kBT)irb
(6b) ¼

Ð
d6brb(6b)exp(�Ua,b(6a,6b)/

kBT)

and

hexp(�Ua,b(6a,6b)/kBT)i0 ¼Ð
d6a

Ð
d6bra(6a)rb(6b)exp(�Ua,b(6a,6b)/kBT)

For given number density N/V, temperature T and concen-

trations xa, the self consistency eqn (2) are solved for functional

forms of the weight functions za(6a) pertaining to the symmetries

of the isotropic, nematic, orthogonal smectic and columnar fluid

phases. For simplicity, uniaxial symmetry is considered for all the

orientationally ordered phases. The symmetry of the phase is
This journal is ª The Royal Society of Chemistry 2010
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entered in the self-consistency calculations through the assumed

dependence of the variational weight function on the positional

and orientational variables 6a ¼ (Ra;Ua). For the fluid phases of

the present study we have the following types of za(6a) functional

dependence according to phase symmetry:

� isotropic phases, for which za(6a) is independent of position

and orientation,

� nematic phases, for which za(6a) is independent of position,

� smectic phases, for which za(6a) is independent of the

positional coordinates in the plane of the smectic layers,

� columnar phases, for which za(6a) is independent of the

positional coordinate along the columnar axis.

Due to the assumed form of the molecular interactions, the

temperature enters in the self-consistency equations only through

the dimensionless combination u* ¼ u/kBT, which therefore is

used as a scaled inverse temperature parameter. The same

parameter can be regarded as a measure of the effective softness

of the shell surrounding the hard core of the spherical molecules.

For each set of solutions za(6a) we evaluate the free energy, the

pressure and the chemical potentials at the respective density,

concentration and temperature. The relative thermodynamic

stability of the phases corresponding to the different solutions is

determined by comparing the respective free energies. Demixing

into coexisting phases I and II is identified through the simul-

taneous equality of the pressures, PI ¼ PII, and the chemical

potentials, mI
a ¼ mII

a (a ¼ 1,2), of each molecular species in the two

phases. The pressure and the chemical potential are calculated

from the free energy derivatives

P ¼ vF

vV

�����N;T
and

ma ¼
vF

vNa

�����V ;T
3. Results and discussion

The approach described in the previous section has been applied

to three types of binary mixtures, namely rod–sphere, plate–

sphere and rod–plate mixtures. The results are presented and

discussed below for each binary mixture type separately.
3.1. Rod–sphere mixtures

Pressure–concentration phase diagrams have been calculated for

rods of length Lr forming binary mixtures with spheres consisting

of a hard core block c surrounded by a shell of soft blocks s of

effective softness u*. Representative diagrams for combinations

of lengths Lr ¼ 5 and Lr ¼ 9 and softness parameters u* ¼ 0 (no

soft shell at all) and u* ¼ 0.02 (representing, for example, spheres

with surface modification that renders them chemically incom-

patible with the rods) are shown in Fig. 1. Isotropic (I), nematic

(Nr) and smectic (Sm) phases are found. The concentration is

expressed in terms of the fraction xr ¼ Nr/N of rod molecules in

the mixture. The dimensionless parameter P*¼ P/PINr
is used for

the pressure, with PINr
denoting the value of the pressure at the
This journal is ª The Royal Society of Chemistry 2010
isotropic to nematic (I � Nr) phase transition of the pure rod

system (xr ¼ 1). It is apparent that the four diagrams of Fig. 1

have the same topology. At low pressures the systems are

isotropic and fully miscible. On increasing the pressure stable

nematic and smectic phases appear at high rod concentrations,

separated by a miscibility gap from the isotropic mixture. The

width of the miscibility gap, i.e. the range of compositions for

which the system is biphasic, increases with increasing pressure.

Analogous theoretical results in a mixture of rods and cubic

particles have been obtained by Alben20 in his pioneering study.

A similar behavior has also been observed in Monte Carlo

simulations of a mixture of hard Gaussian overlap particles.25

There is a critical three-phase coexistence pressure, P*
I-Nr

-Sm, at

which the system decomposes into coexisting isotropic, nematic

and smectic phases with different compositions. The miscibility

gap separates stable isotropic from stable nematic phases for

pressures lower than P*
I-Nr-Sm and separates stable isotropic from

stable smectic phases at higher pressures. At high rod concen-

trations a nematic to smectic (Nr–Sm) phase transition is

obtained. A qualitatively similar phase behavior to the one

shown in Fig. 1 has been found in ref. 30 for mixtures of hard

spherocylinders and spheres.

It is clear from the phase diagrams of the binary mixtures with

u* ¼ 0 that the range of compositions for which the systems self

organize into stable liquid crystalline phases increases on

increasing the rod length. Furthermore the nematic phase for the

long rod (Lr ¼ 9) system is stable for pressures up to nine times

higher than the pressure PINr
. In contrast, the short rod system

(Lr¼ 5) undergoes a transition to the smectic phase at about four

times PINr
. It is also worth noting in the phase diagrams Fig. 1b, c

and d that there is a range of composition for which the mixture

exhibits a pressure-induced reentrant demixing behavior. This

type of reentrant behavior has also been obtained theoretically29

and in Monte Carlo simulations25 for rod–sphere mixtures.

The phase diagrams with u* ¼ 0.02 show a wider miscibility

gap; this is an expected consequence of increasing the incom-

patibility between the two components of the mixture through

the soft shell repulsions. For the same reason the stable ordered

phases are shifted towards high rod concentration region of the

phase diagram and the pressure induced demixing reentrance

behavior is enhanced. Particularly noteworthy is the crossover of

the slope of the nematic–smectic transition line from clearly

negative for u* ¼ 0 to clearly positive for u* ¼ 0.02. To our

knowledge, such switching of the slope has not been observed or

predicted in any of the previous studies. A positive (negative)

slope of the Nr–Sm line indicates that the nematic phase is

destabilized relative to the smectic phase on increasing

(decreasing) the concentration of the spherical molecules in the

mixture. On the other hand, it has been found,22 both in

molecular theory and in computer simulations of mixtures of

spheres and parallel spherocylinders, that the addition of

spherical particles stabilizes the layered phases. This however is

not in contradiction with the switching of the slope shown in

Fig. 1, since the calculations in ref. 22 refer to constant total

volume-fraction conditions. Under such conditions, our calcu-

lations indicate a stabilization of the layered phase on increasing

the spherical component concentration, in agreement with

previous predictions.21–23 This is apparent from the positive slope

of all the graphs of Fig. 2, where the calculated packing fraction
J. Mater. Chem.
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Fig. 1 Calculated pressure (P*)–concentration (xr) phase diagrams for rod–sphere binary mixtures. Four combinations of rod length Lr and softness

parameter u* of the spherical shell are shown: (a) Lr ¼ 5, u* ¼ 0.00; (b) Lr ¼ 5, u* ¼ 0.02; (c) Lr ¼ 9, u* ¼ 0.00; (d) Lr ¼ 9, u* ¼ 0.02. Cartoons of the

molecular self organization are shown for the marked points on the phase diagrams.

Fig. 2 Calculated packing fraction hNr-Sm at the Nr–Sm phase transition

as a function of the rod concentration xr for a binary system of rods and

spheres interacting via purely hard body repulsions (u* ¼ 0). Results are

shown for different lengths Lr of the rod component.
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hNr-Sm ¼ (N/V)(xrvr + xcvc)Nr-Sm at which the Nr–Sm phase

transition occurs is plotted as a function of the composition of

the rods for the system with u*¼ 0 and various rod lengths. In the

expression of the packing fraction, xr,xc and vr,vc denote

respectively the concentrations and molecular volumes of the rod

and sphere components of the mixture.

The nematic order parameter is defined as Sr¼ h3(Ẑr$êr)
2� 1i/

2, with Ẑr denoting the nematic director. Without loss of

generality, Ẑr is taken to coincide with the lattice Z axis. For the

system with Lr ¼ 5, the calculated values of S start out from the

range 0.80–0.86, with the higher ordering corresponding to

higher sphere concentrations. The transition from the nematic to

the smectic phase takes place at extremely high values of

S (>0.99) indicating that rods are practically parallel near the Nr–

Sm phase transition. The biaxial order parameter Br ¼ h(X̂ r$êr)
2

� (Ŷ r$êr)
2i is zero both in nematic and smectic phases.
J. Mater. Chem.
Lastly, from the positional distribution of the rods and

spheres, it follows that the smectic phase consists of alternating

rod-rich and sphere-rich layers. Such a smectic phase, termed as

lamellar, has been observed2–4 experimentally in suspensions of

colloidal rods and spheres. The calculated probabilities for

spheres in the rod-rich region are in general small but not

negligible. It is also found that the layer spacing of the smectic

phase decreases with increasing pressure and rod concentration

xr. For small sphere concentrations the layer spacing does not

change dramatically. Experimental results on polystyrene

spheres and fd virus (‘‘rods’’ of length �900 nm) do not show

swelling of the layers as a function of sphere concentration.2
3.2. Plate–sphere mixtures

Pressure–concentration phase diagrams have been calculated for

binary mixtures of plates of size Lp � Lp with spheres consisting

of a hard core block c surrounded by a shell of soft blocks s of

effective softness u*. Isotropic (I), plate nematic (Np), and

columnar (Col) phases are found.

For purely hard body interactions (u* ¼ 0) the phase diagrams

have the topology shown in Fig. 3. These are similar to the

diagrams of Fig. 1, with the Np and Col in place of the Nr and Sm

phases, respectively. The pressure is again expressed in units of

the I–Np transition pressure (PINp
) of the pure plate system.

Increasing the shape anisometry of the plates, by increasing Lp,

has analogous consequences with increasing the length Lr in the

rod–sphere mixtures, namely (i) expansion of the stability range

of the nematic phase relative to the isotropic and columnar

phase, (ii) shrinking of the coexistence regions of the isotropic

phase with either of the ordered phases and (iii) shift of the

miscibility gap towards higher concentrations of the sphere

component. The negative slope of the nematic to columnar phase
This journal is ª The Royal Society of Chemistry 2010

http://dx.doi.org/10.1039/C0JM01692F
vanakara
Text Box
J. Mater. Chem., 2010, 20(46), 10495-10502.  DOI: 10.1039/C0JM01692F



Fig. 3 Calculated pressure-concentration phase diagrams for plate-

sphere binary mixtures interacting via purely hard-body repulsions (u* ¼
0). Results are shown for two sizes of the square plates: (a) Lp¼ 5 and (b)

Lp ¼ 7. Cartoons of the molecular self organization are shown for the

marked points on the first phase diagram.

Fig. 4 Density profiles of (a) the plate component and (b) the sphere

component for the binary mixture of Fig. 3a (i.e. u* ¼ 0 and Lp ¼ 5) at

plate concentration xp ¼ 0.43 and pressure P* ¼ 9.
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transition line in the pressure–composition diagrams indicates

that, under constant pressure, the columnar phase is destabilized

in favor of the nematic on adding spherical particles. In analogy

with the hard rod–sphere mixtures, this trend is reversed if

constant volume conditions are applied. In this case the addition

of hard spheres enhances the stability of the columnar phase but

at the same time higher pressures are required to maintain the

mixture volume constant.

To analyze the molecular organization in the columnar phase

we have calculated the orientationally averaged two dimensional

density profiles of the plates and spheres on a plane perpendic-

ular to the columns. Representative results are shown in Fig. 4.

The density profiles clearly show that the plate molecules stack

up to form columns and that these columns form a rectangular

lattice with the corridors in between the columns populated by

spheres. The calculated order parameters Sp and Bp have the

same behavior as in the rod–sphere mixture.

Endowing the spherical molecules with an outer shell that

softly repels the plate molecules, by taking u* > 0, we obtain the

phase diagrams of Fig. 5. For small u* the topology of the phase

diagram shows only quantitative differences with the diagram of

Fig. 3a, particularly in the breadth of the miscibility gap. For

large u* (Fig. 5b), the topology of the phase diagram changes and

the system exhibits two different isotropic phases (I1, I2) that

coexist at low pressures over a wide range of compositions. The

two isotropic phases differ in the relative concentrations of plates

and spheres. At higher pressures the system becomes practically
This journal is ª The Royal Society of Chemistry 2010
immiscible and for pressures above P* > 3.9 the system appears

to decompose into plates that form a columnar phase and

spheres that form an isotropic fluid.

The phase diagrams in Fig. 5 are relevant to the phase

sequences observed experimentally13 and studied theoretically37–40

for mixtures of disk-like colloids with non-adsorbing polymers13a

and with silica spheres13b where, aside from the widening of the

demixing gap, an additional isotropic phase was observed.

Apparently, the repulsive interactions among unlike particles

introduce an effective attraction, known as depletion attrac-

tion,55,56 among like particles (see also ref. 50).
3.3. Rod–plate mixtures

Experimental results on mixtures of rod-like and plate-like

colloidal particles have revealed a rich phase behavior.14,15 In

these mixtures, the mutual excluded volume of a pair of plates is

much larger than that of a pair of rods. In addition to distinct

nematic phases and respective coexistence regions, a plate rich

columnar phase appears. The phase behavior of a model of hard

boehmite rods and gibbsite platelets was explored theoreti-

cally15,41 in the context of an Onsager type approach. These

theoretical results describe correctly the experimentally observed

phase behavior at low particle densities. However, the possibility

of formation of positionally ordered liquid crystal phases

(smectic and columnar) at higher densities is not considered in

these calculations. Here we address this point within our

molecular modeling.
J. Mater. Chem.
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Fig. 5 Calculated pressure–concentration phase diagrams for plate-

sphere binary mixtures with hard core and soft shell interactions of

softness u*¼ 0.01 (a) and u*¼ 0.2 (b). The size of the square plates is Lp¼
5 in both cases.

Fig. 6 (a) Calculated pressure vs. plate concentration phase diagram for

plate–rod binary mixtures of molecular sizes Lp ¼ 9 and Lr ¼ 13.

Cartoons of the molecular self organization are shown for the marked

points on the phase diagram. (b) Calculated phase diagram using as

variables the packing fraction of rods (hr) vs. packing fraction of plates

(hp) as applicable to the phase boundaries of (a). (c) Experimental phase

diagram for mixtures of colloidal boehmite rods (aspect ratio Lr/Dr� 10)

and gibbsite platelets (aspect ratio Dp/Lp � 15), redrawn after ref. 14.
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To convey the excluded volume differences of the experimental

systems we have chosen rods of length Lr ¼ 13 and square plates

of side length Lp ¼ 9. For these particle dimensions, the excluded

volume for a pair of plates, qpp, is nine times the excluded volume

for a pair of rods, i.e. qpp ¼ 9qrr, and the excluded volume for

a rod–plate pair is qrp¼ 4qrr. Accordingly, a strongly asymmetric

phase diagrams with respect to the concentration variable is to be

expected. The calculated pressure–concentration phase diagram

for this system is presented in Fig. 6a. The pressure is expressed in

units of the I–Np transition pressure (PINp
) of the pure plate

system. Four different phases—one isotropic phase, two uniaxial

nematic phases (a rod-rich Nr and a plate-rich Np) and a plate

rich columnar phase (Col)—and respective phase coexistence

lines are found. Phase coexistence is indicated by horizontal tie

lines. In the columnar phase the plates and rods assemble into

columns. At low plate concentrations alternating thick and thin

bands, containing plates and rods respectively, are formed in the

x–y plane. At higher plate concentrations, the plates pack into

columns which form a two-dimensional tetragonal lattice whilst

the rods form crossing corridors in the space left between the

plate columns. In both cases the long axis of the rods is prefer-

entially oriented parallel to the x–y plane, i.e. perpendicular to

the columnar axes.

A particularly interesting feature of the phase diagram in

Fig. 6a is the presence of two triple points: the one is at (xp ¼
0.032; P* ¼ 7.0), where the isotropic phase coexists with the two

nematic phases (I–Nr–Np); the other point is at (xp ¼ 0.47; P* ¼
13.2) where the columnar phase coexists with the two nematic

phases (Nr–Np–Col). Compressing the mixture at low plate
J. Mater. Chem.
concentrations, say xp z 0.1, a notable sequence of phase tran-

sitions takes place: from I to I + Np, I + Nr + Np to Nr + Np to Nr

+ Np + Col and finally to high-pressure Nr + Col demixing.

Fig. 6b presents the calculated phase diagram in terms of rod

volume fraction (hr) vs. plate volume fraction (hp) variables at

phase coexistence. This representation is useful because it allows

a straightforward comparison with the experimental results14 (see

Fig. 6c). The triphasic equilibrium corresponds to the two

distinct triangular regions of the phase diagram of Fig. 6b. Our

theoretical results are in qualitative agreement with the experi-

mental observations in the low density regime. In particular, the
This journal is ª The Royal Society of Chemistry 2010
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theoretically predicted phase behavior describes very well the

coexistence between the isotropic and the uniaxial rod-rich and

plate-rich nematic phases. The I–Nr–Np triphasic region, which

clearly appears in the experimental phase diagram, is also

accounted for by the calculation. On the other hand, the exper-

imental observations show, beyond the triphasic region, two high

density liquid crystalline phases, a plate rich columnar and a rod

rich phase X. Thus, the theoretically predicted Nr–Np demixing

appears to be preempted by multiphase equilibria of more than

three phases. This deviation can perhaps be attributed to poly-

dispersity in the sizes and shapes of the experimental colloidal

particles. This is in accord with the Gibbs phase rule whereby in

a truly binary mixture no more than three phases can coexist on

the pressure–concentration phase diagram. Aside from this

deviation, the theoretical phase diagram reproduces correctly the

coexistence of a rod-rich nematic with a plate-rich columnar

phase at high densities and also the Np–Col coexistence at low hr

and high hp as well as the triphasic Nr–Np–Col region appearing

in the experimental phase diagram.

The structure of the phase diagrams show considerable sensi-

tivity to the relative sizes of the rod and plate components. To

explore this we have considered different combinations of sizes.

Fig. 7a presents the calculated pressure–concentration phase

diagram for a binary mixture of size Lp¼ 5 plates with size Lr¼ 7

rods. The low pressure region corresponds to the isotropic phase

over the entire concentration range. A triphasic (I–Nr–Np)

equilibrium is obtained at the triple point (xp ¼ 0.056, P* ¼ 2.8).

Narrow I–Nr and I–Np coexistence regions appear on either side

of the triple point as the pressure is increased or decreased,

respectively. A reentrant transition is observed at plate
Fig. 7 Calculated pressure–concentration phase diagrams for rod–plate

binary mixtures in which the plates are squares of side Lp¼ 5 and the rods

have length either (a) Lr ¼ 7 or (b) Lr ¼ 11.

This journal is ª The Royal Society of Chemistry 2010
concentrations between 0.07 and 0.11. In that range of concen-

trations, increasing the pressure produces the following sequence

of phases: from I to I + Np to Np to Nr + Np to Nr then again to Nr

+ Np to Nr + Np + Col and finally high pressure Nr + Col

decomposition. At intermediate pressures the diagram shows

a demixing region into two uniaxial nematic phases, a rod-rich

(Nr) in coexistence with a plate-rich (Np) nematic. In the

rod-rich nematic Sr > 0.8, Sp z � 0.5 and Br ¼ 0 whereas in

plate-rich nematic Sp > 0.8, Sr z� 0.5 and Bp¼ 0. Furthermore,

a biaxial nematic mixture (Bp s 0 and Br s 0) of rods and plates

is also found in that region. This phase, however, is thermody-

namically unstable to demixing into the two uniaxial nematic

phases and is therefore not shown on the phase diagram. A tri-

phasic (Col–Nr–Np) equilibrium is obtained at the second triple

point (xp ¼ 0.44, P* ¼ 5.6) of the phase diagram of Fig. 7a.

Fig. 7b presents the phase diagram for binary rod–plate

mixtures only with more elongated rods, namely Lr ¼ 11, and

plates of Lp¼ 5 as in Fig. 7a. This combination of molecular sizes

yields relative values of the molecular-pair excluded volumes

qrp ¼ 1.61 qrr and qpp ¼ 2.02 qrr. The topology of the two phase

diagrams in Fig. 7a and b is similar, except that the triple points

are found at higher concentrations and no phase reentrance

transition is obtained for the phase diagram in Fig. 7b.
4. Conclusions

In this work we have introduced a theoretical model of shape

anisometric particles embedded in a cubic lattice and have used it

to describe binary mixtures combining rod-like, plate-like and

spherical particles.

For the mixtures of rod-like with spherical particles we have

found thermodynamically stable isotropic, nematic and lamellar

phases as well as triphasic coexistence between these phases and

regions of biphasic coexistence of all possible combinations of

the three phases. The lamellae form a succession of rod-rich and

sphere-rich layers. We have also found that the presence of soft

shell repulsions between the rods and the spheres tends to

destabilize the lamellar phase relative to the nematic.

For mixtures of plate-like with spherical particles we have

found isotropic, nematic and columnar phases. In the latter, the

columns are formed by plate-like particles and the spheres

occupy the inter-columnar regions. Triphasic and biphasic

equilibria between the three phases are found. The presence of

soft shell repulsions between the rods and the spheres tends to

produce two different isotropic phases in coexistence over

a relatively wide range of compositions.

In both of the above types of binary mixtures, increasing the

anisometry of the rods or plates leads to the enhancement of the

stability of the nematic phase, relative to both the isotropic and

the positionally ordered (lamellar or columnar) phases, together

with shrinking of the concentration range of the coexistence of

the isotropic phase with the ordered phases and the displacement

of the miscibility gap towards higher sphere concentrations.

The phase polymorphism is further enriched in mixtures of

plate-like with rod-like particles. The thermodynamically stable

phases include an isotropic, a columnar and two types of uniaxial

nematic phases. Triphasic and biphasic coexistence is obtained

for several combinations of these four phases. In the columnar

phase the columns are formed by the plates while the rods are
J. Mater. Chem.
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found to occupy the space between the columns and to be pref-

erentially aligned perpendicular to the axes of the columns. The

phase diagrams are found to be fairly sensitive to the relative

sizes of the rod and plate particles. The present work is not

concerned with the molecular factors that could enhance the

stability of a homogeneous nematic mixture of biaxial symmetry

as this issue has been investigated extensively16–20 in previous

works.

Despite its extreme simplicity regarding the shapes and inter-

actions of the particle as well as their allowable spatial configu-

rations, the model reproduces remarkably well the qualitative

experimental trends in all the binary mixture combinations

studied and is also in agreement with a broad variety of theo-

retical and computational results obtained for specific types of

binary mixtures. This suggests that, behind the apparent richness

and diversity, mesophase structure and thermodynamic stability

in all these binary mixtures might be controlled by very basic

microscopic attributes such as particle shape-anisometry and

relative size, which determine the hard body packing properties,

perhaps combined in some cases with possible soft shell inter-

actions which could also confer a more sensitive dependence on

temperature.
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